
Spectate Documentation
Release 1.0.1

Ryan Morshead

Mar 12, 2021

CONTENTS

1 Install 3
1.1 Development . 3

2 The Basics 5
2.1 Nesting Models . 6
2.2 Custom Models . 7

3 Handling Events 9
3.1 Holding Events . 9
3.2 Rolling Back Events . 10
3.3 Muting Events . 11
3.4 Manually Notifying . 11

4 Builtin Model Types 13
4.1 Dictionary . 13
4.2 List . 13
4.3 Set . 14
4.4 Object . 14

5 Spectating Other Types 15
5.1 Adding Model Controls . 16
5.2 Control Callbacks . 17
5.3 Control Event Notifications . 18
5.4 Control Beforebacks . 19
5.5 Control Afterbacks . 20

6 Spectate in Traitlets 21

7 API 23

8 At A Glance 31

Python Module Index 33

Index 35

i

ii

Spectate Documentation, Release 1.0.1

A library that can track changes to mutable data types. With Spectate complicated protocols for managing updates,
don’t need to be the outward responsibility of a user, and can instead be done automagically in the background.

CONTENTS 1

Spectate Documentation, Release 1.0.1

2 CONTENTS

CHAPTER

ONE

INSTALL

Install spectate with pip:

pip install spectate

1.1 Development

If you’d like to work with the source code, then clone the repository from github:

git clone git@github.com:rmorshea/spectate.git && cd spectate

And do an editable install with pip that includes requirements.txt:

pip install -e . -r requirements.txt

3

https://pip.pypa.io/en/stable/quickstart/
https://pip.pypa.io/en/stable/quickstart/

Spectate Documentation, Release 1.0.1

4 Chapter 1. Install

CHAPTER

TWO

THE BASICS

Spectate defines three main constructs:

1. models - objects which get modified by the user.

2. views - functions which receives change events.

3. controls - private attributes of a model which produces change events.

Since the mvcmodule already provides some basic models for us you don’t need to worry about controls yet. Let’s
begin by considering a builtin Dict model. We can instantiate this object just as we would with a standard dict:

from spectate import mvc

d = mvc.Dict(a=0)

Now though, we can now register a view() function with a decorator. This view function is called any time a change
is made to the model d that causes its data to be mutated.

@mvc.view(d) # <----- pass `d` in the decorator to observe its changes
def printer(

model, # <------- The model which experienced an event
events, # <----- A tuple of event dictionaries

):
print("model:", model)
for e in events:

print("event:", e)

Change events are passed into this function as a tuple of immutable dict-like objects containing change information.
Each model has its own change event information. In the case of a Dict the event objects have the fields key, old,
and new. So when we change a key in d we’ll find that our printer view function is called and that it prints out an
event object with the expected information:

d["a"] = 1

model: {'a': 1}
event: {'key': 'a', 'old': 0, 'new': 1}

In cases where a mutation would result in changes to multiple change, one or more event objects can be broadcast to
the view function:

d.update(b=2, c=3)

5

https://docs.python.org/3/library/stdtypes.html#dict

Spectate Documentation, Release 1.0.1

model: {'a': 1, 'b': 2, 'c': 3}
event: {'key': 'b', 'old': Undefined, 'new': 2}
event: {'key': 'c', 'old': Undefined, 'new': 3}

2.1 Nesting Models

What if we want to observe changes to nested data structures though? Thankfuly all of Spectate’s Builtin Model Types
that inherit from Structure can handle this automatically whenevener another model is placed inside another:

from spectate import mvc

outer_dict = mvc.Dict()
inner_dict = mvc.Dict()

mvc.view(outer_dict, printer)

outer_dict["x"] = inner_dict
inner_dict["y"] = 1

model: {'x': {}}
event: {'key': 'x', 'old': Undefined, 'new': {}}
model: {'y': 1}
event: {'key': 'y', 'old': Undefined, 'new': 1}

This works just as well if you mix data types too:

from spectate import mvc

outer_dict = mvc.Dict()
middle_list = mvc.List()
inner_obj = mvc.Object()

mvc.view(outer_dict, printer)

outer_dict["x"] = middle_list
middle_list.append(inner_obj)
inner_obj.y = 1

model: {'x': []}
event: {'key': 'x', 'old': Undefined, 'new': []}
model: [<spectate.models.Object object at 0x7f8041ae9550>]
event: {'index': 0, 'old': Undefined, 'new': <spectate.models.Object object at
→˓0x7f8041ae9550>}
model: <spectate.models.Object object at 0x7f8041ae9550>
event: {'attr': 'y', 'old': Undefined, 'new': 1}

However, note that events on nested data structures don’t carry information about the location of the notifying model.
For this you’ll need to implement a Custom Models and add this information to the events manually.

6 Chapter 2. The Basics

Spectate Documentation, Release 1.0.1

2.2 Custom Models

To create a custom model all you have to do is inherit from Model and broadcast events with a notifier(). To
get the idea across, lets implement a simple counter object that notifies when a value is incremented or decremented.

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self):
self.value += 1
with mvc.notifier(self) as notify:

notify(new=self.value)

def decrement(self):
self.value -= 1
with mvc.notifier(self) as notify:

notify(new=self.value)

counter = Counter()

@mvc.view(counter)
def printer(model, events):

for e in events:
print(e)

counter.increment()
counter.increment()
counter.decrement()

{'new': 1}
{'new': 2}
{'new': 1}

To share or unshare the view functions between two models using the link() and unlink() functions respectively.
This is especially useful when creating nested data structures. For example we can use it to create an observable binary
tree:

class Node(mvc.Model):

def __init__(self, data, parent=None):
if parent is not None:

mvc.link(parent, self)
self.parent = parent
self.left = None
self.right = None
self.data = data

def add(self, data):
if data <= self.data:

if self.left is None:
self.left = Node(data, self)
with mvc.notifier(self) as notify:

(continues on next page)

2.2. Custom Models 7

Spectate Documentation, Release 1.0.1

(continued from previous page)

notify(left=self.left, path=self.path())
else:

self.left.add(data)
else:

if self.right is None:
self.right = Node(data, self)
with mvc.notifier(self) as notify:

notify(right=self.right, path=self.path())
else:

self.right.add(data)

def path(self):
n = self
path = []
while n is not None:

path.insert(0, n)
n = n.parent

return path

def __repr__(self):
return f"Node({self.data})"

root = Node(0)

mvc.view(root, printer)

root.add(1)
root.add(0)
root.add(5)
root.add(2)
root.add(4)
root.add(3)

model: Node(0)
event: {'right': Node(1), 'path': [Node(0)]}
model: Node(0)
event: {'left': Node(0), 'path': [Node(0)]}
model: Node(1)
event: {'right': Node(5), 'path': [Node(0), Node(1)]}
model: Node(5)
event: {'left': Node(2), 'path': [Node(0), Node(1), Node(5)]}
model: Node(2)
event: {'right': Node(4), 'path': [Node(0), Node(1), Node(5), Node(2)]}
model: Node(4)
event: {'left': Node(3), 'path': [Node(0), Node(1), Node(5), Node(2), Node(4)]}

8 Chapter 2. The Basics

CHAPTER

THREE

HANDLING EVENTS

Spectate provides a series of context managers which allow you to capture and then modify events before they are
distributed to views. This allows you to hold, rollback, and even mute events. These context managers are useful for
handling edge cases in your code, improving performance by merging events, or undo unwanted changes.

3.1 Holding Events

It’s often useful to withhold sending notifications until all your changes are complete. Using the hold() context
manager, events created when modifying a model won’t be distributed until we exit the context:

d = mvc.Dict()

effectively the same as the printer view above
mvc.view(d, lambda d, e: list(map(print, e)))

print("before")
with mvc.hold(d):

d["a"] = 1
print("during")

notifications are sent upon exiting
print("after")

before
during
{'key': 'a', 'old': Undefined, 'new': 1}
after

3.1.1 Merging Events

Sometimes there is a block of code in which it’s possible to produce duplicate events or events which could be merged
into one. By passing in a reducer to hold() you can change the list of events just before they are distributed. This
is done by having the reducer return or yield the new events.

from spectate import mvc

d = mvc.Dict()

mvc.view(d, lambda _, es: list(map(print, es)))

def merge_dict_events(model, events):

(continues on next page)

9

Spectate Documentation, Release 1.0.1

(continued from previous page)

changes = {}

for e in events:
if e.key in changes:

changes[e.key][1] = e.new
else:

changes[e.key] = [e.old, e.new]

for key, (old, new) in changes.items():
yield {"key": key, "new": new, "old": old}

with mvc.hold(d, reducer=merge_dict_events):
for i in range(5):

this loop would normally produce 5 different events
d["a"] = i

{'key': 'a', 'new': Undefined, 'old': 4}

3.2 Rolling Back Events

When an error occurs while modifying a model you may not want to distribute events. Using rollback() you can
suppress events that were produced in the same context as an error:

from spectate import mvc

d = mvc.Dict()

@mvc.view(d)
def should_not_be_called(d, events):

we never call this view
assert False

try:
with mvc.rollback(d):

d["a"] = 1
d["b"] # key doesn't exist

except KeyError:
pass

3.2.1 Rolling Back Changes

Suppressing events after an error may not be enough. You can pass rollback() an undo function which gives you
a chances to analyze the events in order to determine and then return a model to its original state. Any events that you
might produce while modifying a model within the undo function will be muted.

d = mvc.Dict()

def undo_dict_changes(model, events, error):
seen = set()
for e in reversed(events):

if e.old is mvc.Undefined:
del model[e.key]

(continues on next page)

10 Chapter 3. Handling Events

Spectate Documentation, Release 1.0.1

(continued from previous page)

else:
model[e.key] = e.old

try:
with mvc.rollback(d, undo=undo_dict_changes):

d["a"] = 1
d["b"] = 2
print(d)
d["c"]

except KeyError:
pass

print(d)

{'a': 1, 'b': 2}
{}

3.3 Muting Events

If you are setting a default state, or returning to one, it may be useful to withhold events completely. This one’s pretty
simple compared to the context managers above. Just use mute() and within its context, no events will be distributed:

from spectate import mvc

l = mvc.List()

@mvc.view(l)
def raises(events):

this won't ever happen
raise ValueError("Events occured!")

with mvc.mute(l):
l.append(1)

3.4 Manually Notifying

At times, and more likely when writing tests, you may need to forcefully send an event to a model. This can be
achieved using the notifier() context manager which provides a notify() function identical to the one seen in
Control Callbacks.

Warning: While you could use notifier() instead of adding Adding Model Controls to your custom models,
this is generall discouraged because the resulting implementation is resistent to extension in subclasses.

from spectate import mvc

m = mvc.Model()

@mvc.view(m)
def printer(m, events):

(continues on next page)

3.3. Muting Events 11

Spectate Documentation, Release 1.0.1

(continued from previous page)

for e in events:
print(e)

with mvc.notifier(m) as notify:
the view should print out this event
notify(x=1, y=2)

12 Chapter 3. Handling Events

CHAPTER

FOUR

BUILTIN MODEL TYPES

Spectate provides a number of builtin model types that you can use out of the box. For most users these built-in types
should be enough, however if you’re adventurous, then you can create your own Custom Models.

4.1 Dictionary

The Dict model is a subclass of Python’s standard dict. This will produce events when the value of a key in the
dictionary changes or is deleted. This will result when calling methods like dict.update() and dict.pop(),
but also when using the normal syntax to set or delete an item. Events produced by Dict have the following fields:

Field Description
key The key in the dict model that changed.
old

• The value that was present in the key before the change
• Is Undefined if the index was not present.

new
• The value that this is now present after the change
• Is Undefined if the index was deleted.

4.2 List

The List model is a subclass of Python’s standard list. This model will produce events when an element of the
list changes or an element changes from one position to another. This may happen when calling methods like list.
append() or list.remove(), but also when using the normal syntax to set or delete an item. Events produced
by List have the following keys:

Field Description
index The index in the dict model that changed.
old

• The value that was present before the change
• Is Undefined if the key was not present.

new
• The value that this is now present after the change
• Is Undefined if the key was deleted.

13

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#list

Spectate Documentation, Release 1.0.1

4.3 Set

The Set model is a subclass of Python’s standard set. This model will produce events when an element of the set
changes. This may happen when calling methods like set.add() or set.discard(). Events produced by Set
have the following keys:

Field Description
old A set of values that were removed due to the change.
new A set of the values that were added due to the change.

4.4 Object

The Object model is a subclass of Python’s standard object. This model will produce events when an attribute of
the object changes or is deleted. This may happen when using setattr() or delattr(), but also when using the
normal syntax to set or delete attributes. Events produced by Object have the following keys:

Field Description
attr The attribute in the model that changed.
old

• The value that was present before the change
• Is Undefined if the attribute was not present.

new
• The value that this is now present after the change
• Is Undefined if the key was deleted.

14 Chapter 4. Builtin Model Types

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/functions.html#delattr

CHAPTER

FIVE

SPECTATING OTHER TYPES

In a prior example demonstrating how to create a custom model we used notifier() to produce events. This is
sufficient in most cases, but sometimes you aren’t able to manually trigger events from within a method. This might
occur when inheriting from a builtin type (e.g. list, dict, etc) that is implemented in C or a third party package
that doesn’t use spectate. In those cases, you must wrap an existing method and are religated to producing events
before and/or after it gets called.

In these scenarios you must define a Model subclass which has Control objects assigned to it. Each control object
is responsible for observing calls to particular methods on the model class. For example, if you wanted to know when
an element was appended to a list you might observe the append method.

To show how this works we will implement a simple counter with the goal of knowing when the value in the counter
has incremented or decremented. To get started we should create a Counter class which inherits from Model and
define its increment and decrement methods normally:

Note: Usually if you’re using Control objects you’d do it with multiple inheritance, but to keep things simple we
aren’t doing that in the following examples.

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self, amount):
self.value += amount

def decrement(self, amount):
self.value -= amount

c = Counter()
c.increment(1)
c.increment(1)
c.decrement(1)
assert c.value == 1

15

https://docs.python.org/3/tutorial/classes.html#multiple-inheritance

Spectate Documentation, Release 1.0.1

5.1 Adding Model Controls

Because we know that the value within the Counter changes whenever increment or decrement is called these
are the methods that we must observe in order to determine whether, and by how much it changes. Do do this we
should add a Control to the Counter and pass in the names of the methods it should be tracking.

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self, amount):
self.value += amount

def decrement(self, amount):
self.value -= amount

_control_change = mvc.Control('increment', 'decrement')

We define the behavior of _control_change with methods that are triggered before and/or after the ones being
observed. We register these with Control.before() and Control.after(). For now our beforeback and
afterback will just contain print statements so we can see what they receive when they are called.

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self, amount):
self.value += amount

def decrement(self, amount):
self.value -= amount

_control_change = mvc.Control(
["increment", "decrement"],
before="_before_change",
after="_after_change",

)

def _before_change(self, call, notify):
print("BEFORE")
print(call)
print(notify)
print()
return "result-from-before"

def _after_change(self, answer, notify):
print("AFTER")
print(answer)
print(notify)
print()

No lets see what happens we can call increment or decrement:

16 Chapter 5. Spectating Other Types

Spectate Documentation, Release 1.0.1

c = Counter()
c.increment(1)
c.decrement(1)

BEFORE
{'name': 'increment', 'kwargs': {}, 'args': (1,), 'parameters': <function
→˓BoundControl.before.<locals>.beforeback.<locals>.parameters at 0x7f9ce57e8a60>}
<function BoundControl.before.<locals>.beforeback.<locals>.notify at 0x7f9ce57e89d8>

AFTER
{'before': 'result-from-before', 'name': 'increment'}
<function BoundControl.after.<locals>.afterback.<locals>.notify at 0x7f9ce57e89d8>

BEFORE
{'name': 'decrement', 'kwargs': {}, 'args': (1,), 'parameters': <function
→˓BoundControl.before.<locals>.beforeback.<locals>.parameters at 0x7f9ce57f2400>}
<function BoundControl.before.<locals>.beforeback.<locals>.notify at 0x7f9ce57e89d8>

AFTER
{'before': 'result-from-before', 'name': 'decrement'}
<function BoundControl.after.<locals>.afterback.<locals>.notify at 0x7f9ce57e89d8>

5.2 Control Callbacks

The callback pair we registered to our Counter when learning how to define controls, hereafter referred to as “be-
forebacks” and “afterbacks” are how event information is communicated to views. Defining both a beforeback and
an afterback is not required, but doing so allows for a beforeback to pass data to its corresponding afterback which in
turn makes it possible to compute the difference between the state before and the state after a change takes place:

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self, amount):
self.value += amount

def decrement(self, amount):
self.value -= amount

_control_change = mvc.Control(
["increment", "decrement"],
before="_before_change",
after="_after_change",

)

def _before_change(self, call, notify):
amount = call.parameters()["amount"]
print(f"value will {call['name']} by {amount}")
old_value = self.value
return old_value

(continues on next page)

5.2. Control Callbacks 17

Spectate Documentation, Release 1.0.1

(continued from previous page)

def _after_change(self, answer, notify):
old_value = answer["before"] # this was returned by `_before_change`
new_value = self.value
print(f"the old value was {old_value})
print(f"the new value is {new_value})
print(f"the value changed by {new_value - old_value}")

Now we can try incrementing and decrementing as before:

c = Counter()
c.increment(1)
c.decrement(1)

value will increment by 1
the old value was 0
the new value is 1
the value changed by 1
value will decrement by 1
the old value was 1
the new value is 0
the value changed by -1

5.3 Control Event Notifications

We’re now able to use “beforebacks” and “afterbacks” to print out information about a model before and after a
change occures, but what we actually want is to send this same information to views as we did when we learned The
Basics. To accomplish this we use the notify function passed into the beforeback and afterback and pass it keyword
parameters that can be consumed by views. To keep things simple we’ll just replace our print statements with calls
to notify:

from spectate import mvc

class Counter(mvc.Model):

def __init__(self):
self.value = 0

def increment(self, amount):
self.value += amount

def decrement(self, amount):
self.value -= amount

_control_change = (
mvc.Control('increment', 'decrement')
.before("_before_change")
.after("_after_change")

)

def _before_change(self, call, notify):
amount = call.parameters()["amount"]
notify(message="value will %s by %s" % (call["name"], amount))
old_value = self.value

(continues on next page)

18 Chapter 5. Spectating Other Types

Spectate Documentation, Release 1.0.1

(continued from previous page)

return old_value

def _after_change(self, answer, notify):
old_value = answer["before"] # this was returned by `_before_change`
new_value = self.value
notify(message="the old value was %r" % old_value)
notify(message="the new value is %r" % new_value)
notify(message="the value changed by %r" % (new_value - old_value))

To print out the same messages as before we’ll need to register a view with out counter:

c = Counter()

@mvc.view(c)
def print_messages(c, events):

for e in events:
print(e["message"])

c.increment(1)
c.decrement(1)

value will increment by 1
the old value was 0
the new value is 1
the value changed by 1
value will decrement by 1
the old value was 1
the new value is 0
the value changed by -1

5.4 Control Beforebacks

Have a signature of (call, notify) -> before

• call is a dict with the keys

– 'name' - the name of the method which was called

– 'args' - the arguments which that method will call

– 'kwargs' - the keywords which tCallbacks are registered to specific methods in pairs - one will be
triggered before, and the other after, a call to that method is made. These two callbacks are referred to as
“beforebacks” and “afterbacks” respectively. Defining both a beforeback and an afterback in each pair is
not required, but doing so allows a beforeback to pass data to its corresponding afterback.

– parameters a function which returns a dictionary where the args and kwargs passed to the method
have been mapped to argument names. This won’t work for builtin method like dict.get() since
they’re implemented in C.

• notify is a function which will distribute an event to views

• before is a value which gets passed on to its respective afterback.

5.4. Control Beforebacks 19

https://docs.python.org/3/library/stdtypes.html#dict.get

Spectate Documentation, Release 1.0.1

5.5 Control Afterbacks

Have a signature of (answer, notify)

• answer is a dict with the keys

– 'name' - the name of the method which was called

– 'value' - the value returned by the method

– 'before' - the value returned by the respective beforeback

• notify is a function which will distribute an event to views

20 Chapter 5. Spectating Other Types

CHAPTER

SIX

SPECTATE IN TRAITLETS

The inspiration for Spectate originally came from difficulties encountered while working with mutable data types in
IPython’s Traitlets. Unfortunately Traitlets does not natively allows you to track changes to mutable data types.

Now though, with Spectate, we can add this functionality to traitlets using a custom TraitType that can act as a
base class for all mutable traits.

from spectate import mvc
from traitlets import TraitType

class Mutable(TraitType):
"""A base class for mutable traits using Spectate"""

Overwrite this in a subclass.
_model_type = None

The event type observers must track to spectate changes to the model
_event_type = "mutation"

You can dissallow attribute assignment to avoid discontinuities in the
knowledge observers have about the state of the model. Removing the line below
will enable attribute assignment and require observers to track 'change'
events as well as 'mutation' events in to avoid such discontinuities.
__set__ = None

def default(self, obj):
"""Create the initial model instance

The value returned here will be mutated by users of the HasTraits object
it is assigned to. The resulting events will be tracked in the ``callback``
defined below and distributed to event observers.
"""
model = self._model_type()

@mvc.view(model)
def callback(model, events):

obj.notify_change(
dict(

self._make_change(model, events),
name=self.name,
type=self._event_type,

)
)

(continues on next page)

21

https://github.com/ipython/traitlets/

Spectate Documentation, Release 1.0.1

(continued from previous page)

return model

def _make_change(self, model, events):
"""Construct a dictionary describing the change"""
raise NotImplementedError()

With this in place we can then subclass our base Mutable class and use it to create a MutableDict:

class MutableDict(Mutable):
"""A mutable dictionary trait"""

_model_type = mvc.Dict

def _make_change(self, model, events):
old, new = {}, {}
for e in events:

old[e["key"]] = e["old"]
new[e["key"]] = e["new"]

return {"value": model, "old": old, "new": new}

An example usage of this trait would then look like:

from traitlets import HasTraits, observe

class MyObject(HasTraits):
mutable_dict = MutableDict()

@observe("mutable_dict", type="mutation")
def track_mutations_from_method(self, change):

print("method observer:", change)

def track_mutations_from_function(change):
print("function observer:", change)

my_object = MyObject()
my_object.observe(track_mutations_from_function, "mutable_dict", type="mutation")

my_object.mutable_dict["x"] = 1
my_object.mutable_dict.update(x=2, y=3)

method observer: {'old': {'x': Undefined}, 'new': {'x': 1}, 'name': 'mutable_dict',
→˓'type': 'mutation'}
function observer: {'old': {'x': Undefined}, 'new': {'x': 1}, 'name': 'mutable_dict',
→˓'type': 'mutation'}
method observer: {'old': {'x': 1, 'y': Undefined}, 'new': {'x': 2, 'y': 3}, 'name':
→˓'mutable_dict', 'type': 'mutation'}
function observer: {'old': {'x': 1, 'y': Undefined}, 'new': {'x': 2, 'y': 3}, 'name':
→˓'mutable_dict', 'type': 'mutation'}

22 Chapter 6. Spectate in Traitlets

CHAPTER

SEVEN

API

class spectate.models.Dict(*args: Any, **kwargs: Any)
A spectate.mvc enabled dict.

clear()→ None. Remove all items from D.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

class spectate.models.List(*args: Any, **kwargs: Any)
A spectate.mvc enabled list.

append(object, /)
Append object to the end of the list.

clear()
Remove all items from list.

extend(iterable, /)
Extend list by appending elements from the iterable.

insert(index, object, /)
Insert object before index.

pop(index=-1, /)
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove(value, /)
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort(*, key=None, reverse=False)
Stable sort IN PLACE.

23

Spectate Documentation, Release 1.0.1

class spectate.models.Object(*args: Any, **kwargs: Any)
A spectat.mvc enabled object.

class spectate.models.Set(*args: Any, **kwargs: Any)
A spectate.mvc enabled set.

add()
Add an element to a set.

This has no effect if the element is already present.

clear()
Remove all elements from this set.

difference_update()
Remove all elements of another set from this set.

discard()
Remove an element from a set if it is a member.

If the element is not a member, do nothing.

intersection_update()
Update a set with the intersection of itself and another.

pop()
Remove and return an arbitrary set element. Raises KeyError if the set is empty.

remove()
Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.

symmetric_difference_update()
Update a set with the symmetric difference of itself and another.

update()
Update a set with the union of itself and others.

class spectate.models.Structure(*args: Any, **kwargs: Any)

class spectate.base.Control(methods, *, before=None, after=None)
An object used to define control methods on a Model

A “control” method on a Model is one which reacts to another method being called. For example there is a
control method on the List which responds when append() is called.

A control method is a slightly modified beforeback or afterback that accepts an extra notify argument. These
are added to a control object by calling Control.before() or Control.after() respectively. The
notify arugment is a function which allows a control method to send messages to views that are registered
to a Model.

Parameters

• methods (Union[list, tuple, str]) – The names of the methods on the model which
this control will react to When they are calthrough the Nodeled. This is either a comma
seperated string, or a list of strings.

• before (Union[Callable, str, None]) – A control method that reacts before any of
the given methods are called. If given as a callable, then that function will be used as the
callback. If given as a string, then the control will look up a method with that name when
reacting (useful when subclassing).

24 Chapter 7. API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Spectate Documentation, Release 1.0.1

• after (Union[Callable, str, None]) – A control method that reacts after any of the
given methods are alled. If given as a callable, then that function will be used as the
callback. If given as a string, then the control will look up a method with that name when
reacting (useful when subclassing).

Examples

Control methods are registered to a Control with a str or function. A string may refer to the name of
a method on a Model while a function should be decorated under the same name as the Control object to
preserve the namespace.

from spectate import mvc

class X(mvc.Model):

_control_method = mvc.Control("method").before("_control_before_method")

def _control_before_method(self, call, notify):
print("before")

Note how the method uses the same name. It
would be redundant to use a different one.
@_control_a.after
def _control_method(self, answer, notify):

print("after")

def method(self):
print("during")

x = X()
x.method()

before
during
after

class spectate.base.Model(*args: Any, **kwargs: Any)
An object that can be controlled and viewed.

Users should define Control methods and then view() the change events those controls emit. This process
starts by defining controls on a subclass of Model.

Examples

from specate import mvc

class Object(Model):

_control_attr_change = Control(
"__setattr__, __delattr__",
before="_control_before_attr_change",
after="_control_after_attr_change",

)

def __init__(self, *args, **kwargs):

(continues on next page)

25

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Spectate Documentation, Release 1.0.1

(continued from previous page)

for k, v in dict(*args, **kwargs).items():
setattr(self, k, v)

def _control_before_attr_change(self, call, notify):
return call["args"][0], getattr(self, call["args"][0], Undefined)

def _control_after_attr_change(self, answer, notify):
attr, old = answer["before"]
new = getattr(self, attr, Undefined)
if new != old:

notify(attr=attr, old=old, new=new)

o = Object()

@mvc.view(o)
def printer(o, events):

for e in events:
print(e)

spectate.base.link(source, *targets)
Attach all of the source’s present and future view functions to the targets.

Parameters

• source (Model) – The model whose view functions will be attached to the targets.

• targets (Model) – The models that will acquire the source’s view functions.

Return type None

spectate.base.notifier(model)
Manually send notifications to the given model.

Parameters model (Model) – The model whose views will recieve notifications

Return type Iterator[Callable[. . . , None]]

Returns A function whose keyword arguments become event data.

Example

m = Model()

@view(m)
def printer(m, events):

for e in events:
print(e)

with notifier(m) as notify:
the view should print out this event
notify(x=1, y=2)

spectate.base.unlink(source, *targets)
Remove all of the source’s present and future view functions from the targets.

Parameters

• source (Model) – The model whose view functions will be removed from the targets.

• targets (Model) – The models that will no longer share view functions with the source.

26 Chapter 7. API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

Spectate Documentation, Release 1.0.1

Return type None

spectate.base.unview(model, function)
Remove a view callbcak from a model.

Parameters

• model (Model) – The model which contains the view function.

• function (Callable[[Model, Tuple[Dict[str, Any], . . .]], None]) – The callable
which was registered to the model as a view.

Raises ValueError – If the given function is not a view of the given model.

Return type None

spectate.base.view(model: Model)→ Callable[[_F], _F]
spectate.base.view(model: Model, function: Callable[[Model, Tuple[Dict[str, Any], . . .]], None])→

None
A decorator for registering a callback to a model

Parameters model (Model) – the model object whose changes the callback should respond to.

Examples

from spectate import mvc

items = mvc.List()

@mvc.view(items)
def printer(items, events):

for e in events:
print(e)

items.append(1)

Return type Optional[Callable[[~_F], ~_F]]

spectate.base.views(model)
Return a model’s views keyed on what events they respond to.

Model views are added by calling view() on a model.

Return type List[Callable[[Model, Tuple[Dict[str, Any], . . .]], None]]

spectate.events.hold(model, reducer=None)
Temporarilly withold change events in a modifiable list.

All changes that are captured within a “hold” context are forwarded to a list which is yielded to the user before
being sent to views of the given model. If desired, the user may modify the list of events before the context is
left in order to change the events that are ultimately sent to the model’s views.

Parameters

• model (Model) – The model object whose change events will be temporarilly witheld.

• reducer (Optional[Callable[[Model, List[Dict[str, Any]]],
List[Dict[str, Any]]]]) – A function for modifying the events list at the end of
the context. Its signature is (model, events) -> new_events where model is
the given model, events is the complete list of events produced in the context, and the
returned new_events is a list of events that will actuall be distributed to views.

27

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Spectate Documentation, Release 1.0.1

Notes

All changes witheld from views will be sent as a single notification. For example if you view a specate.
mvc.models.List and its append() method is called three times within a hold() context,

Examples

Note how the event from l.append(1) is omitted from the printed statements.

from spectate import mvc

l = mvc.List()

mvc.view(d, lambda d, e: list(map(print, e)))

with mvc.hold(l) as events:
l.append(1)
l.append(2)

del events[0]

{'index': 1, 'old': Undefined, 'new': 2}

Return type Iterator[List[Dict[str, Any]]]

spectate.events.mute(model)
Block a model’s views from being notified.

All changes within a “mute” context will be blocked. No content is yielded to the user as in hold(), and the
views of the model are never notified that changes took place.

Parameters mode – The model whose change events will be blocked.

Examples

The view is never called due to the mute() context:

from spectate import mvc

l = mvc.List()

@mvc.view(l)
def raises(events):

raise ValueError("Events occured!")

with mvc.mute(l):
l.append(1)

Return type Iterator[None]

spectate.events.rollback(model, undo=None, reducer=None)
Withold events if an error occurs.

Generall operate

28 Chapter 7. API

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None

Spectate Documentation, Release 1.0.1

Parameters

• model (Model) – The model object whose change events may be witheld.

• undo (Optional[Callable[[Model, Tuple[Dict[str, Any], . . .], Exception],
None]]) – An optional function for reversing any changes that may have taken place. Its
signature is (model, events, error) where model is the given model, events is
a list of all the events that took place, and error is the exception that was riased. Any
changes that you make to the model within this function will not produce events.

Examples

Simple supression of events:

from spectate import mvc

d = mvc.Dict()

@mvc.view(d)
def should_not_be_called(d, events):

we never call this view
assert False

try:
with mvc.rollback(d):

d["a"] = 1
d["b"] # key doesn't exist

except KeyError:
pass

Undo changes for a dictionary:

from spectate import mvc

def undo_dict_changes(model, events, error):
seen = set()
for e in reversed(events):

if e.old is mvc.Undefined:
del model[e.key]

else:
model[e.key] = e.old

try:
with mvc.rollback(d, undo=undo_dict_changes):

d["a"] = 1
d["b"] = 2
print(d)
d["c"]

except KeyError:
pass

print(d)

{'a': 1, 'b': 2}
{}

Return type Iterator[None]

29

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None

Spectate Documentation, Release 1.0.1

A modules which exports specate’s Model-View-Controller utilities in a common namespace

For more info:

• spectate.base

• spectate.events

• spectate.models

30 Chapter 7. API

CHAPTER

EIGHT

AT A GLANCE

If you’re using Python 3.6 and above, create a spectate.mvc object

from spectate import mvc

l = mvc.List()

Register a view function to it that observes changes

@mvc.view(l)
def printer(l, events):

for e in events:
print(e)

Then modify your object and watch the view function react

l.append(0)
l[0] = 1
l.extend([2, 3])

{'index': 0, 'old': Undefined, 'new': 0}
{'index': 0, 'old': 0, 'new': 1}
{'index': 1, 'old': Undefined, 'new': 2}
{'index': 2, 'old': Undefined, 'new': 3}

31

Spectate Documentation, Release 1.0.1

32 Chapter 8. At A Glance

PYTHON MODULE INDEX

s
spectate.base, 24
spectate.events, 27
spectate.models, 23
spectate.mvc, 30
spectate.utils, 30

33

Spectate Documentation, Release 1.0.1

34 Python Module Index

INDEX

A
add() (spectate.models.Set method), 24
append() (spectate.models.List method), 23

C
clear() (spectate.models.Dict method), 23
clear() (spectate.models.List method), 23
clear() (spectate.models.Set method), 24
Control (class in spectate.base), 24

D
Dict (class in spectate.models), 23
difference_update() (spectate.models.Set

method), 24
discard() (spectate.models.Set method), 24

E
extend() (spectate.models.List method), 23

H
hold() (in module spectate.events), 27

I
insert() (spectate.models.List method), 23
intersection_update() (spectate.models.Set

method), 24

L
link() (in module spectate.base), 26
List (class in spectate.models), 23

M
Model (class in spectate.base), 25
module

spectate.base, 24
spectate.events, 27
spectate.models, 23
spectate.mvc, 30
spectate.utils, 30

mute() (in module spectate.events), 28

N
notifier() (in module spectate.base), 26

O
Object (class in spectate.models), 23

P
pop() (spectate.models.Dict method), 23
pop() (spectate.models.List method), 23
pop() (spectate.models.Set method), 24

R
remove() (spectate.models.List method), 23
remove() (spectate.models.Set method), 24
reverse() (spectate.models.List method), 23
rollback() (in module spectate.events), 28

S
Set (class in spectate.models), 24
setdefault() (spectate.models.Dict method), 23
sort() (spectate.models.List method), 23
spectate.base

module, 24
spectate.events

module, 27
spectate.models

module, 23
spectate.mvc

module, 30
spectate.utils

module, 30
Structure (class in spectate.models), 24
symmetric_difference_update() (spec-

tate.models.Set method), 24

U
unlink() (in module spectate.base), 26
unview() (in module spectate.base), 27
update() (spectate.models.Dict method), 23
update() (spectate.models.Set method), 24

35

Spectate Documentation, Release 1.0.1

V
view() (in module spectate.base), 27
views() (in module spectate.base), 27

36 Index

	Install
	Development

	The Basics
	Nesting Models
	Custom Models

	Handling Events
	Holding Events
	Rolling Back Events
	Muting Events
	Manually Notifying

	Builtin Model Types
	Dictionary
	List
	Set
	Object

	Spectating Other Types
	Adding Model Controls
	Control Callbacks
	Control Event Notifications
	Control Beforebacks
	Control Afterbacks

	Spectate in Traitlets
	API
	At A Glance
	Python Module Index
	Index

